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Resource Constrained Design of Artificial Neural Networks

Using Comparator Neural Network

Benjamin W. Wah and Tanay S. Kami[

Coordinated Science Laboratory

University of Illinois

1101 W. Springfield Ave.

Urbana, IL 61801.

Abstract

We present a systematic design method executed under resource constraints for automating the design of

artificial neural networks using the back error propagation algorithm. Our system aims at finding the best

possible configuration for solving the given application with proper tradeoff between the training time

and the network complexity. The design of such a system is hampered by three related problems. First,

there are infinitely many possible network configurations, each may take an exceedingly long time to

train; hence, it is impossible to enumerate and train all of them to completion within fixed time, space,

and resource constraints. Second, expert knowledge on predicting good network configurations is

heuristic in nature and is application dependent, rendering it difficult to characterize fully in the design

process. A learning procedure that refines this knowledge based on examples on training neural networks

for various applications is, therefore, essential. Third, the objective of the network to be designed is ill-

defined, as it is based on a subjective tradeoff between the training time and the network cost. A design

process that proposes alternate configurations under different cost-performance tradeoff is important. We

have developed a Design System which schedules the available time, divided into quanta, for testing

:alternative network configurations. Its goal is to select/generate and test alternative network

configurations in each quantum, and find the best network when time is expended. Since time is limited,

a dynamic schedule that determines the network configuration to be tested in each quantum is developed.

The schedule is based on relative' comparison of predicted training times of alternative network

configurations using comparator network paradigm. The comparator network has been trained to

compare training times for a large variety of traces of TSSE-versus-time collected during back-

propagation learning of various applications.



1. INTRODUCTION

Wehave developed a systematic design method executed under resource constraints for automating

the design of artificial neural networks using the back error propagation,algorithm. Our system aims at

finding the best possible configuration for solving the given application with proper tradeoff between the

training time and the network complexity. The design of such a system is hampered by three related

problems. First, there are infinitely many possible network configurations, each may take an exceedingly

long time to train; hence, it is impossible to enumerate and train all of them to completion within fixed

time, space, and resource constraints. Second, expert knowledge on predicting good network

configurations is heuristic in nature and is application dependent, rendering it difficult to characterize

fully in the design process. A learning procedure that refines this knowledge based on examples on train-

ing neural networks for various applications is, therefore, essential. Third, the objective of the network to

be designed is ill-deft_ned, as it is based on a subjective tradeoff between the training time and the network

cost. A design process that proposes alternate configurations under different cost-performance tradeoff is

important.

In [6], it was shown that cost and performance cannot be combined to define an objective function.

Performance should be used as an objective under constrained cost. In this study, we set an upper limit on

the number of hidden units in any network to constrain the cost and assume the objective function of the

network to be designed is a function of current training time and predicted completion time. The behavior

of TSSE, the total sum of squared errors, is usually oscillatory in time space and the completion time is

difficult to predict. Absolute value of the prediction may be fallible, but relative values of the predicted

completion times of alternative networks is a dependable basis for comparison. We assume that the user

proposes a pool of possible networks before design begins, and that the system generates new ones during

the design. We assume that when TSSE, the total sum of squared errors, reaches ec,it, a user-specified

critical maximum error, training in back-propagation is complete and terminated. Finally, we assume a

set of training patterns for a given application is available.

2. PREVIOUS WORK

Research on artificial neural networks has been very active in the last few years [12, 16]. Techno-

logical advances made it easier to build massively parallel machines and hence models of computation

are inspired by neural networks [5]. Artificial neural networks have the greatest potential in areas such as

speech and image recognition, where many hypotheses are pursued in parallel, high computation rates are

required, and the performance of the current best systems are far from ideal [11].

A network typically consists of a large number of simple elements that learn and collectively solve

a complicated, even ill-defined, problem. The simple element is referred to as a neuron. The current state

of the neuron is called its activation, that is a function of the inputs the neuron receives from other neu-

rons or the external world, and the weights associated with the corresponding links. Each neuron is

characterized by a number known as its bias and an activation function. Each network has one layer of

input neurons and a layer of output neurons. There might be one or more hidden layers between these two

layers.

In this research we consider the systematic design of feedforward networks learned by back-

propagation learning algorithms [12, 16]. Such networks have been shown to apply to a large class of

Research support by National Aeronautics and Space Administration Grant NCC 2-481.
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applications. In our study we used training traces generated for NetTalk, Lymphography Domain and

IRIS Plants Datal_ase problems.

Although back-propagation learning is one of the most popular and powerful learning algorithms, it

is a heuristic gradient descent algorithm and does not provide any guidance on how initial weights and

network configurations should be chosen. Numerous enhancements on improving its gradient descent

nature has been developed, but little work has been done on developing a systematic design process.

Since training of a given network may or may not converge depending on the network configuration and

its initial weights, and a great deal of time might have been incurred before discovering that learning does

not converge, it is imperative that a poor network be found and discarded early in the design process.

There are four major methods proposed in the literature. They apply a combination of greedy

searchand backtracking.

Ad Hoe Method. In this method [16], one starts with a network configuration, assigns random

weights to it, chooses some values of training parameters, and trains the network by applying the back-

propagation algorithm. If the network does not converge, a new network is chosen. The problem with this

method is that if the chosen network does not converge, the time to train this network is wasted. This

may exhaust the allotted training time, leaving no promising network as a result.

lterative Refinement Method. Fahlman [1] has developed a Restart Method in which learning is

allowed to restart, with new random weights, when learning has failed to converge after a given number

of epochs. The time reported for a trial includes the time spent before and after the restart. This method

avoids the problem of nonconvergence of learning by setting a ceiling on the number of epochs to be

expended on a particular network. However, it does not alter the network configuration, but only selects a

new set of weights. Hence learning may not converge at all if the choice of the configuration is wrong.

Moreover, the performance of the method also depends on the choice of the ceiling on epochs expended

per network. A high value would result in wasting computational resources, whereas a low value may

result in discarding promising configurations early in the learning process.

Evolutionary Learning. The problem of deciding whether or not a given task can be performed by

a given network architecture is NP-complete [7]. There is no method for specifying a priori an appropri-

ate network structure, neither in terms of its learning performance nor in terms of its representational

comprehensibility. Many have hypothesized that the design process should be evolutionary, starting from

primitive networks to more general ones [22]. For feed forward networks learned using the back-

propagation algorithm, promising methods have been developed for choosing the number of hidden units

[10, 15]. These approaches are broadly divided into two classes, start big and remove [9, 14, 17], and

start small and add [2, 18].

Cascade-Correlation Learning [3], developed by Fahlman and Lebiere, is one of the most promis-

ing configuration generation method. Starting with a minimal network, it expands the network incremen-

tally: hidden units are added to the network one at a time. Based on a pool of candidate hidden units, the

network is trained a number of times using the training set. The hidden unit that maximizes the magni-

tude of the correlation between the outputs and the candidate unit's value is added to the active network

and its input weights are frozen. The method does not require an educated guess of the network

configuration: it can build deep networks without slowing down the performance because at any time,

only one layer of weights is trained. The problem with this approach is that it represents a form of greedy

search: once a hidden unit is committed to the active network, it cannot be removed even if performance

is found to degrade later. A more general approach is to allow backtracking to a previous configuration
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once the present configuration is found to perform, poorly.

lterative Refinement with Backtracking. We developed a design method based on backtracking

[20] that proved to be promising and successful (see Figure 1). The system is divided into two types of

experiments: Type-I and Type-II.

Consltaiats

Problem d

Specification w I

Obje_ve

Evaluatio_n t

CriterionEff_

TYPE I Experiments

Find a setof good

configurations

A few promising

configurations

Complete training of the given

setofconfiguntioos

Set of ordered

eonfigmations

t TYPE II Experiments

Find evaluation criterionE'(I)
that is consistent with the ordered

-- set of configurations

Evaluation

criterion EET)

from previous
iteration

Figure 1. Coupled Iterative Refinement Design Method.

Type-I experiments attempt to find a set of goo d configurations, given the problem specifications,

the resource constraints, and an evaluation criteria for evaluating alternative configurations. These exper-

iments are in the form of a search. In each quantum of time, the most promising network is selected and
trained based on the evaluation criteria. Hence the method has a mechanism to backtrack if the current

most promising network fails to perform well later. The result of Type-I experiments is a set of promis-

ing con figurations, selected on the basis of the evaluation criteria.

The set of promising networks found by Type-I experiments are then fully evaluated until their

TSSE drops below a critical error, £crit. The traces of TSSE-versus-time in training these networks are

used as inputs to Type-II experiments, which refines and learn new evaluation criteria consistent with the

traces. The new criteria learned are then used in Type-I experiments; and the process of refinement

repeats.

Although the method has been successful in generating good network configurations for a number

of applications, there are a few drawbacks. First, the Type-I experiments developed currently only select a
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promisingconfigurationfrom a poolof configurations(with initial weightsdefined)suppliedby the
designers.To generalizethemethod,a configurationgeneratorthat proposesnewnetworksmustbe
included.Second,learninginType-IIexperimentsisbasedontracesof promisingconfigurationsfoundin
Type-Iexperiments;suchasetmaybebiasedstatistically,andthecriteri_ilearnedinType-IIexperiments
maynotgeneralizewell to otherproblems.Third,theformof theevaluationcriteriaisnotdefinedandit
canbeanyfunctionof differentparameters,suchasTSSE, Slope of TSSE, training time T, etc. To learn a

general evaluation criteria in Type-II experiments, a variety of initial guesses and applications should be

used as training inputs. Fourth, the normalization of training times and TSSE was done by user-supplied

normalization constants: such constants again restrict the generality of the evaluation criteria learned.

With the above drawbacks in mind, we have addressed three major problems. First, our design

decoupled the Type-I and Type-II experiments. We replaced the Type-II experiments by training a com-

parator network [8, 13, 19] to perform relative comparisons of predicted training times. Training inputs to

the comparator network are drawn from a variety of applications and network sizes so that they are not

biased. Second, we developed better normalization methods so that the networks are compared using

their relative goodness rather than absolute goodness in the Design System (or Type-I experiments in the

original method). This avoids the specification of normalization constants as needed before. Last, we

developed a network configuration generator that generates new networks to be tested in the Design Sys-

tem. The configuration generator utilizes expert background knowledge in proposing better networks to

be experimented.

3. NEURAL NETWORK DESIGN

In this section we describe our methodology for the automated design of neural networks. We first

describe our Design System. We discuss all the essential components of the system.

3.1. Design System

The Design System systematically trains promising configurations for various amount of quanta of

time. It selects, generates, or discar_ network configurations and trains promising ones until the allotted

time is exhausted. The flow diagram of the system is shown in Figure 2. Descriptions of relevant terms

are tabulated in Table 1. We assume that the time allowed is divided into quanta and that in each quan-

tum limited learning is performed on one network.

At the beginning of each quantum, the Strategy Selector selects the next candidate network to be

tested. If a candidate network is finished or discarded, then a new candidate network is generated. The

selected or generated candidate network undergoes learning using a back propagation neural network

learning system (we have developed our own Simulator) in the Strategy Applicator. The effects of learn-

ing are available readily at the end of the quantum. The Performance Database stores the TSSE behavior

for all networks under training. The Performance Predictor then predicts using the comparator neural net-

work the best candidate found so far on the basis of data in the Performance Database. The Strategy

Selector then selects the next candidate to be tested, and the design cycle continues until the allotted time

is exhausted. In the rest of this section, we describe research issues considered in each component of the

Design System.

The Strategy Selector selects or generates a candidate network to be tested in the next quantum of

time based on static and dynamic strategies stored in the system. Since limited amount of neural network

learning can be performed in each quantum, the proper strategy to be used cannot be determined a priori.

The major issues involved are the selection of the momentum, the learning rate, the guidance function,
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Figure 2. Artificial Neural Network Design System.

and the method for generating a new candidate network. We fix the momentum and the learning rate in

our neural network simulation system based on previous results in this area. The guidance function is

expected to be a function of the goodness value, epochs expended on a netwo.rk, and quanta remaining.

Note that the guidance strategy selected is a combination of backtracking and greedy search: backtracking

is useful when the time remaining is large, whereas a greedy search is more promising when time is run-

ning out. The candidate generator that we adopt at this time is based on evolutionary techniques, such as

cascade correlation [3].

The Strategy Applicator trains the candidate network selected for a limited number of epochs in a

quantum of time. We have developed our own back-propagation neural network simulator as opposed to

the preexisting simulators because simulating a pool of networks consumes a large amount of memory

and we needed to have a control over memory usage. Also we wanted the simulator to stop and report the

performance at the end of each quantum. The tradeoff to be considered here is the size of the quantum: if

the quantum is too large, then fewer networks will be examined within a time limit, but more accurate

performance results can be assessed at the end of a quantum.

The Application Performance Database maintains the history of performance of all candidate net-

works under consideration, including measures such as the history of goodness values of candidate net-

works, average time taken for testing a candidate network, performance after every test, the costs of net-

works experimented., and the list of TSSE values.
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Table 1. Terms used in the Design System.

Term Description

Candidate The network under consideration as specified byits configuration, initial

weights, current learning rate, and momentum.

Candidate Pool Pool of candidates divided into active list, finished list, and discarded list.

Cost -f (N,_,_ ?, N_g_ ?, Nbi_,_, ?)

Goodness Value Measure for selecting the best candidate network if the process were to be

stopped. Same as performance.

Guidance Strategy Measure for selecting the candidate network for further learning in the next

quantum if the experiments were to be continued.

TSSE Total sum of squared errors between the actual outputs produced by the

candidate and the corresponding training outputs.

ecdt Maximum critical error so that learning of a network is considered complete

if its TSSE is less than _cdt.

Incumbent The candidate network with the best goodness value at a given time.

Basis Candidate A candidate whose TSSE is reduced below a predetermined multiple of Eerit

and the slope of TSSE-time plot at the time considered is negative. Used as a

basis for generating new candidate.

Discarded Network A candidate network that has undergone at least one test and whose goodness

value is more than two standard deviations below the average goodness value

of the active candidate networks.

Best Network The incumbent when time is expended.

The Performance Predictor determines the best candidate if the design process were to be stopped

at any time. We assume that this prediction is based on computing a goodness value for each network

and selecting one with the best goodness value. We assume that the goodness value of a candidate net-

work is some unknown function of the network's predicted completion time and total time spent in the

neural network simulator. We realize this function using a comparator network paradigm which is

explained in implementation details.

4. DESIGN ISSUES AND APPROACH

In this section, we discuss our research on addressing the issues in the Design System. Systematic

methods are developed for resolving these issues and for overcoming the problems associated with our

design method. We discuss each of these issues along with our solutions.

4.1. Candidate-Network Generator

In our Design System, we assume that a pool of active candidate neural network configurations are

provided by the users initially and that the system generates new configurations when needed. The pool

should consist of at least one candidate network specification. As discussed in Section 2, in order for the

system to be able to generate networks in an incremental fashion, we apply an evolutionary learning tech-

nique in generating new configurations.
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Our evolutionary learning technique to generate new candidate networks is as follows:

1) The generator accepts the current candidate pool and comparator goodness function as inputs.

2) Select a candidate randomly out of the top one fourth goodness valued candidates. It is considered as
basis candidate. If it is not tested at all then incumbent is chosen as the basis candidate.

3) List initial assertions for the production rulebase system for all the active candidates, basis and incum-
bent.

Consider the candidates whose TSSE value is reducing and close to ec,.i, as well tested candidates.

Record the relationship between candidates. Two candidates are related if they have the same number

of layers and the difference between the number of hidden units is less than half of maximum pertur-

bations allowed. We call these candidates to be in the vicinity of each other.

6) Record the difference in performance in the related candidates. Locate the maximum performance

candidate in the vicinity of the basis candidate. If there is such candidate then consider that candidate
as the basis candidate.

7) Check whether the basis candidate is in the top two third of the well tested candidates. Choose
incumbent as the basis otherwise.

8) Find the greatest performance improvement transform of the basis candidate. Here transform means

the difference in the network configuration.

9) Check whether the transform is valid, i.e. it does not violate cost constraints, it has not been tried

already and yields a feasible new network. Explore an unexplored direction otherwise, i.e. randomly

perturb the configuration.

10) If this perturbation of the basis candidate is not going to exceed the limit, randomly add/subtract hid-

den units to generate a new configuration in the vicinity of the basis candidate. If a unit is added, then

the weights of the new network are set to the same values for the corresponding links of the earlier

basis candidate network. The weights of the links to and from the added unit(s) are chosen randomly.

Similarly, when a unit is removea, the unit and its corresponding links are removed, and the rest of

the weights retain their values.

11) If the vicinity of the basis candidate is exhausted or there is no transform feasible under cost con-

straints, then the same configuration with new initial set of random weights is generated as a new can-
didate.

12) Since we need to use the epochs expended in a candidate network in computing its goodness value,

we assume that the epochs expended on a new candidate be a fraction of the epochs expended on the

basis network. The particular fraction used is currently set to half of the epochs expended on basis
candidate.

4)

5)

4.2. Comparator Network

Goodness measure of a candidate is an ill-defined concept. It should be a measure of selecting the

most promising network. In the domain of artificial neural network design, it should be inveresely propor-

tional to the actual completion time. It can be a function of TSSE, Slope of TSSE-versus-time curve, its

Second derivative, moving averages or statistics of these quantities, epochs expended, and/or predicted

completion time. The form of the function is also ill-defined. Hence absolute measure of goodness is
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difficult to compute.Theproblemof selectingthebestcandidatefrom a poolof candidatesinvolves
comparisonamongthecandidates.A relativegoodnessmeasureinsteadof absolutegoodnessmeasure
sufficestheneeds.In [13],MehraandWahhavepresenteda novellearningarchitecture,calledcom-

parator neural network for relative comparison of completion times of b.andidate networks. We briefly
describe the architecture in this section.

LEFT
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/
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Figure 3. Comparator Neural Network.

4.2.1. Description

We assume that the goodness value of a candidate is a nonlinear function of the candidate's current

training time and predicted completion time. As the form of the function is ill-defined, we realize this

function by a comparator neural network.

A comparator neural network is shown in Fig. 3. It consists of two identical subnets, viz.

left-subnet(L) and right-subnet(R). Two input vectors to be compared, IL and In are applied to each

subnet. The network has to learn to compare and choose the more promising input between the two

applied inputs. We train the network to learn the difference in desired outputs.

Let the desired output difference be Oo. The inputs IL and IR produce outputs OL and OR respec-

tively. As the two subnets are identical it is same function which maps input to output in both subnets.

Let O-OL-O a. The objective then becomes to minimize the cost function:

E ,.(O-OD)2

A derivation similar to back-propagation algorithm leads us to the teaching outputs to both the sub-

nets as follows:



- 10-

OF. OE 00
- - 2(o-oo)

oot oo oot

OE
nOt ,, = -2n(0-%)

OOt

Ot '-ch - ot-2n(o-0o) ,, Ot-2n(Ot-On-0o )

Similarly,

OE aE _0
.... 2(0-00)
0on 0o oon

AOR - -_l _Oa "2_ (0--0o)

oR' ch I on+2 (o-oo) - on+2n(ot-on-0o )

Teach outputs are computed for every pattern presentation from the actual desired outputs and

current subnet outputs and conventional back-propagation learning is performed. In order to train the sub-

nets identically, we apply the inputs commutatively, i.e. each pair of inputs is presented as It-In and also

In-It.

4.2.2. Trace Generation

Inputs to the comparator network are derived from the traces of TSSE-versus-time for a variety of

networks for each problem. The networks used must represent an unbiased sample of possible networks

used in the Design System. Note that the same network may be initialized with different initial weights.

We have considered only 2-layer networks. The upper bound on the total number of hidden units is

the number of training patterns, and the lower bound is 1. We have considered three benchmark problems

for these experiments, viz., NetTalk, IRIS Plants Database and Lymphography Domain. For each of these

problems, we trained at least 40 different networks with our back-propagation simulator. We chose 5 con-

verged networks and 5 nonconverged'networks (upto 3000 epochs) for training, and 1 converged network

and 2 nonconverged networks for testing, for each benchmark problem leading to traces of 39 networks.

4.2.3. Pattern Generation

The TSSE-versus-time traces of all these networks were sampled loglinearly and linearly at approxi-

mately 20 different points. Each of the sampled traces was filtered using 4 kinds of Butterworth filters and

two fitting techniques, linear and exponential. Completion times were predicted from the filtered and

fitted data. The estimated values and the actual completion time were scaled linearly and loglinearly to lie

between [0-1] interval for sigmoid neurons. Empirically, we have observed that linear sampling and

linear scaling yields the best results. Scaled completion training time for nonconverged traces was set to

3.0 heuristically. These 8 predicted values with the current sampling epochs (scaled) were fed to com-

parator network as input patterns. Each converged network is compared against each other converged and

nonconverged network, for the same benchmark problem. Nonconverged networks are not compared

among themselves.

As the values of current sampling time, actual completion time and predicted completion times are

scaled linearly, there is a strong dependence on scaling denominator, maximum training time, tmax. In all

our experiments we have set tmax to be 10000 epochs, but this value may have to be increased for
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mapping to [0-1] interval. Hence we inject 10% noise in tmax. We randomly select a value between

10000 and 100000 for tmax with 10% probability.

4.2.4. Training and Testing

All input-output patterns for all 3 benchmark problems yield 58304 training comparisons and 3120

testing comparisons. The testing network traces are entirely different from training traces. The accuracy

of the comparator network is same as number of times the sign of the difference in actual outputs of the

subnets, OL-OR, is consistent with the sign of the difference in actual completion times. Extensive exper-

iments were performed by varying hidden units, learnrate, momentum of the comparator subnets, and

sampling and scaling methods.

4.2.5. Implementation in the Design System

Choice of the comparator network involved the tradeoff between training and testing accuracy, and

size of the network. Currently, we have selected a comparator network with 9-15-1 configuration with

learnrate 0.2 and momentum 0.5 trained on linearly sampled and scaled data. It yielded 75% accuracy

both on training and testing data after 664 training epochs.

4.2.5.1. Conversion to a Function

The trained comparator neural network is in the form of a weightsfile. As the patterns applied com-

mutatively, both the subnets are identical and they realize the same function. This function learned by a

subnet, produces a value in [0-1] interval proportional to the completion time of a network and hence it

behaves opposite of the sought goodness function in our Design System. We define goodness value to be

(1.0 - OL). As the network has already been trained and rebuilding and simulating a subnet is an unneces-

sary overhead on the Design System, we built a C-routine which functions exactly as the simulated

left-subnet from the stored weights. An automated facility to build a C-routine from the dumped

weightsfile is developed for this purpose.

4.2.5.2. Incremental Scaling Denominator

We have addressed the problem of removing the dependence on scaling denominator, tmax, in

Design System also. First, we start with a predetermined value(10000) for tmax. After each quantum, we

check whether the number of epochs expended on the current network is in the 10% vicinity of tmax. If

such a case exists, tma x is increased by 10% and goodness values of all active candidate networks is

updated. A possible disadvantage may be that the number of goodness values to be computed at the end

of such a quantum is equal to the number of active networks in the Design System.

4.3. Parameter Initialization

Various parameters have to initialized in the Design System. We expect the user to set some of these

parameters and the others are set by the system internally depending on the application problem

specification. We will discuss in this section how they are set.
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4.3.1.UserDefined Parameters

Like any ANN simulator, we expect the user to define application problem specifications and the

stopping criterion, ecrit. The user must specify at least one probable network configuration in the initial

pool of active networks. A flag (FEED-F) needs to be set if direct links from input units to output units

are desired. In addition to these parameters, we expect the user to set the number of active candidates to

be considered at the beginning of any quantum. This setting can be based on the total time available and

problem complexity. The user has to specify the number of times the pruning heuristic to be called for

discarding poor performing candidates and generating new candidates. In candidate generation, we need

the user to set the limit on number of perturbations of the same basis network and define the vicinity to

co,it for well-tested candidates.

The pre_learning_cycles represents the number of epochs that need to be expended on each network

in the initial candidate pool in order to extract the trend in the TSSE-versus-time curve to predict comple-

tion time. This also helps in avoiding the possible initial transients in the learning curve. This parameter

is usually chosen to be 50 so that we can filter and fit the TSSE-versus-time curve reliably.

4.3.2. Internally Set Parameters

The epochs..per_test represents the number of training patterns that will be iterated in testing the

candidate network once. Ideally, all the training patterns should be cycled once in each epoch. However,

if the application is large, such as NetTalk, this time may be prohibitive. We are planning to determine a

suitable function for this parameter. The parametric form of this function is

epochsper_test - f (T _ , Nea, _, M _)

where T is the total time available to the Design System, Nea t is the number of entries in the input-output

pattern set, and M is a machine-dependent parameter that accounts for the load and speed of the applica-

tion environment. It can be set to the actual time required for executing one iteration of the back-

propagation algorithm on the network with the maximum cost. The above function would give a tradeoff

between the number of epochs per test and the complexity of the application. Currently we have imple-

mented a function which depends only on the number of entries in the pattern set, Neat. Please note that

epochsper-test can be set to a fractional value also.

{lunc(7-.OO5Neat) if Neat < 10i)0epochs..pertest - otherwise

The average_quantum_duration represents the size of a quantum of time, during which a single net-

work is tested. If the quantum size is too large, then too few networks will be tested in a fixed amount of

time, although more certainty can be attributed to the goodness values at the end of a test. We measure

the time to build and simulate a 2-layer network with hidden units equal to the number of input-output

patterns for one test. As this is the maximum allowed network for the given application problem under

cost constraints and the actual candidate networks are far less complex, we heuristically set

averagequantum_duration to one fourth the above measured time.

In generating a new neural network configuration, a number of parameters need to be determined. In

order to limit the complexity of the network, we set the maximum layers to be 5 (maximum_layers), and

limit the total number of hidden units (maximum._hidden_units) by the number of input-output pattern set.

In generating a new network configuration, we need to determine a vicinity criterion that identifies

whether the new configuration is similar to the ones already generated. Two networks are considered in
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vicinityof eachotherif theyhavethesamenumberof layersanddifferencein thenumberof hiddenunits
is lessthanhalf of maximum perturbations allowed. Finally, a pruning criterion on when a network is

to be discarded from the active list needs to be specified. Whenever the pruning heuristic is activated, we

discard the candidates whose goodness values are two standard deviations less than the mean of goodness

values of all active candidates.

4.4. Output of the Design System

As discussed in Section 1, the objective function of our design process is not well defined. Users

usually determine subjectively whether a solution meets their requirements after it has been proposed, and

when an adequate solution is found, they may wish to find another one that surpasses it. The design pro-

cess can be repeated with different initial values for parameters and different initial candidate pool.

Again, this method reduces our lack of knowledge on the objective to a systematic search of different

objectives that meet the requirements.

The system stores the configuration and initial weights of all the networks built in the complete run.

Currently, the system outputs the list of all candidates with their TSSE, training times, goodness and gui-

dance values at the end. If a network converges in the specified time limit, the system quits immediately

outputting current weights of that network and the list sorted by goodness values. All the networks can be

rebuilt and trained to completion to validate the consistency of comparator neural network.

5. FUTURE WORK

5.1. Experimental Results

We plan to compare the above approach based on evolutionary learning with one based on a greedy

approach. In the latter method, a new network configuration is generated based on perturbation of the

network with the best goodness value. Note that a method based on backtracking is better when the time

allowed is sufficiently large, whereas a greedy search, such as cascade correlation, performs better under

a tight time constraint. A proper tradeoff between the two approaches remains an issue to be studied in
this research.

5.2. Stopping Criteria

Currently, a network is considered to be converged if TSSE falls below ecrit. Another way of deter-

mining convergen_:e is implemented in cascade correlation. For classification application problems, out-

put of an output neuron is considered to be 1 if it lies in the interval [0.6-1] and 0 if it lies in the interval

[0-0.4]. In each test, number of output neurons producing wrong output is computed. If there is no such

output neuron for all the patterns in the test, then the network is claimed to be converged. Our system

monitors the wrong output bits in every test and with a slight modification, this stopping criterion can be

implemented in the Design System.

5.3. Trace storage

Currently, TSSE values after every test are stored in the performance database. For a large number

of active networks and high time limit, the storage of all TSSE values can overload memory. There is a

need of a method to sample the TSSE values stored and store only a limited set. Initial values in the learn-

ing curve are important to extract the downward trend and current values are essential to determine the

closeness to e¢rit. Also the sampling can be Ioglinear or linear. In our future work, we would like to
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addressthisproblemcarefully.In thecurrentsystem,we limit thenumberof activecandidatesandstore
allthetracevalues.

Thecomparator network used for predicting completion time has been trained over the pattern set

generated using the complete trace from the beginning of the learning. If a new method of storing traces

is implemented, then the comparator network should be trained and tested again.

5.4. Issues in Generation

The candidate networks simulated can have upto 5 layers. Each layer is linked to the next higher

layer. There is an additional provision for linking input units to output units. The system does not allow

any additional links. There may be a need to have links from any lower unit to any higher unit. A network

with all lower units linked to all higher units is difficult to parallelize but learns faster. Please note that in

a 2-layer network, our system provides all such links and it has been shown that two layers are sufficient

to learn a given input-output mapping using back-propagation algorithm [10].

Generation of new candidate by perturbing the basis candidate involves change in the number of

hidden units in one of the hidden layers. There is no provision to add(remove) a layer to(from) the

configuration. The production rulebase system for generation is certainly a time consuming program.

Generation is required only when the initial pool of candidates needs more networks or a candidate is dis-

carded in the system run. As it is not called frequently, it is not an overhead, but if new pruning heuristics

are implemented then generation may be a significant time overhead. A simplified version with reduced

complexity of candidate generation is desired.

5.5. Learning Guidance Function

In our current system, we have a greedy approach to guidance strategy. A guidance function of the

following form may be used.

guidance = f (goodness _, epoch $, quanta_remaining)

This function is heuristic in nature and has to be learned using TEACHER architecture applying popula-

tion based learning strategies [21]. The best network at any stage in the course of training may get stuck

in a local minimum later. Hence, the function should penalize the network if the epochs expended were

large. In contrast, the guidance function is not monotonic with respect to quanta_remaining. When

quanta_remaining is low, it may be necessary to focus experimentation on the better networks found so

far; whereas if the time remaining is large, the resource scheduler may schedule less promising networks

to be trained.

6. ADDITIONAL UTILITIES

The following utilities are provided in the current system but not used as they are redundant in our

framework. The system does utilize these utilities and they can be activated in later use to develop a more

efficient Design System.

6.1. Normalization of Goodness Values

If the goodness measure is based on various application-dependent factors such as TSSE, Slope of

TSSE-versus-time curve, its Second derivative, moving averages or statistics of these quantities, epochs

expended then the quantities that may affect a goodness value include emax, the maximum TSSE value,

tmax, the maximum number of epochs allowed for training any network for this application, and Crnax, the
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maximum cost of any network configuration to be used. As it is important that a goodness function

learned for one application is not restricted to this application, these application-dependent normalization

constants must be selected properly.

In finding emax, we assume that the value of any output unit varies between 0 to 1 and that the

desired outputs are binary. Hence, the average difference between the target output and the actual output

per output unit per pattern is 0.5. The sum of average TSSE values for all output units and all training

patterns is, therefore, (Npatter n xNoutput × 0.52), where Npaner,, and No,,,r_t are the number of training pat-

terns and output units, respectively. Note that 0.5 is squared because we are measuring the sum of

squared errors. From experience, we assume that emax is a constant multiple of the above quantity; that

is,

_max " 1.5 N_ttern No,,te_t 0"52

To normalize the cost of a network, we note that for any neural network application, the maximum

number of hidden units required in a 2-layer network (with one hidden layer and one output layer) is

equal to the number of training patterns. Hence, the cost of this "maximum" network can be used to

normalize the costs of networks considered in the Design System.

The selection of tmax, the maximum number of epochs for normalization, is more difficult, as it is

difficult to predict the maximum time to stop learning in a neural network. To overcome this problem,

we can use the incremental scaling denominator method in comparator network paradigm.

6.2. Moving Averages

The application performance database can store window as well as auto-regressive moving aver-

ages of different quantities such as TSSE, Slope of TSSE, Second Derivative of TSSE. Our system pro-

vides all utilities to calculate these moving averages.

For window averages, the system expects the user to specify length of different windows for above

quantities. In using auto-regressive moving averages, a number of constants may need to be set. For

instance, k in the following formula needs to be determined.

+ (1-k)_ TSSeARMA _'_e " k TSSEc,,,,._,t .-.-. ot_

The proper constant to be used will be determined experimentally.

6.3. Learnrate-Momentum Update

In [4], Frazini has proposed a method to update learnrate according to the progress of the network

towards convergence. If the TSSE is reducing(increasing) for successive tests then the learnrate is

increased(reduced) by a small fraction and kept unchanged otherwise. We have implemented this

approach to update learnrate and momentum for individual candidate networks. The user has to specify

minimum number of cycles the network should go through before this update is activated. This parameter

can be same as pre_learning._cycles. Currently, we have bypassed this utility to reduce the complexity of

our Design System.
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